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Abstract. The Landau-Zener (LZ) transition of a two-level system coupling to spin chains near their
critical points is studied in this paper. Two kinds of spin chains, the Ising spin chain and XY spin chain,
are considered. We calculate and analyze the effects of system-chain coupling on the LZ transition. A
relation between the LZ transition and the critical points of the spin chain is established. These results
suggest that LZ transitions may serve as the witnesses of criticality of the spin chain. This may provide a
new way to study quantum phase transitions as well as LZ transitions.

PACS. 32.80.Bx Level crossing and optical pumping – 03.65.Yz Decoherence; open systems; quantum
statistical methods – 05.70.Jk Critical point phenomena – 05.50.+q Lattice theory and statistics

1 Introduction

Quantum information processing promotes renewed at-
tentions in quantum two-level systems in recent years. A
number of two-level systems have been tested as good can-
didates of qubits that are the least units in quantum in-
formation processing [1]. A good qubit requires that the
qubit is well isolated from its environments and easy to
manipulate. There are many ways to manipulate qubits,
one of them is to use Landau-Zener (LZ) sweeps, which
have been realized in recent experiments on superconduct-
ing qubits [2–4].

The LZ transition occurs when two instantaneous
eigenvalues of a quantum system come close together
due to the parameter change. It has attracted attentions
for decades since the work in the early 1930s in slow
atomic collisions [5–7] and spin dynamics [8]. The LZ
theory has found many applications, such as the men-
tioned manipulation of qubits, the enhancement of the
macroscopic quantum tunneling [9] and the control of the
transition probability as well as the quantum phase fac-
tor [10]. Recently, the LZ effect was proved to be useful
in quantum information processing such as the prepara-
tion of quantum states in circuit QED systems [11], cre-
ating entangled modes in cavities [12] and fault-tolerant
single-qubit gate operations [13]. In practice, the qubit
is always influenced by its environment, leading to de-
coherence in that system. Therefore, taking the environ-
ment into account when study the LZ transition is a
practical consideration. The LZ transitions in two-state
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systems dissipatively coupled to their environments have
been studied extensively [14–18], those results show that
the two-level system is robust against the influence of en-
vironment. Those studies do not consider the interactions
among the particles in the environment, hence the infor-
mation of the particle-particle correlation can not reflected
in the LZ transitions. It is well-known that the spin-spin
coupling in the spin-chain may result in quantum phase
transitions, due to the quantum fluctuation at zero tem-
perature [19]. One dimension spin chains which may be
solved exactly are rather attractive in such studies, es-
pecially by using the concepts developed in quantum in-
formation theory, such as entanglement of spins in spin
chains [20], as well as the geometric phase [21] and the fi-
delity [22]. Other relations have already been established
between the quantum phase transitions in environment
and the decoherence of system [23], entanglement [24],
geometric phase [25,26], where the property of system
play the role of detector of the environment. These stud-
ies have also stimulated us to consider LZ transitions in
the environment of spin chains, and such a study may
provide a new method to investigate quantum phase tran-
sitions. Actually, the relation between LZ transitions and
the quantum phase transitions has been considered in ref-
erence [27], where they studied the LZ transitions of the
spin chain itself under a time-dependent evolution, here
we shall consider the LZ transition of a coupled time-
dependent two-state system and regard the chain as an
environment.

In this paper, we will investigate the LZ transitions in
two-state systems surrounding by spin chains in transverse
fields near their critical points. We will focus on two kinds
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of spin-chain, one is the Ising spin chain and another is
XY spin chain. As we shall show you, the environment’s
properties can also be reflected in the systems’ LZ transi-
tions.

2 Ising spin chain as an environment

Taking a spin chain described by the Ising model as the
environment, we restrict ourself to consider the case where
the chain-system coupling only affects the spin flip of the
two level system. The Hamiltonian that governs the dy-
namics of the whole system (two-level system and the
chain) reads,

H(t)=
vt

2
σz+

∆

2
σx−J

M∑
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(
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z
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Here vt
2 σ

z + ∆
2 σ

x is the standard Landau-Zener Hamilto-
nian, with σz = |↑〉〈↑| − |↓〉〈↓|, and σx = |↑〉〈↓| + |↓〉〈↑|,
|↑〉,|↓〉 stand for the excited and ground state of the two
level system, and this part of the Hamiltonian describes
the situation where the dynamics is restricted to two lev-
els that are coupled by a constant tunnel matrix element
and cross at a constant velocity. σx

j , σy
j and σz

j stand for
the Pauli operators of the spin at site j in the Ising chain;
J and λ describe the strength of the spin coupling and the
transverse field. The periodic condition has been chosen
to the spin chain, and we choose M = (N − 1)/2 for odd
N , where N is the number of the spins in the chain. g is
the coupling coefficient between the two-level system and
the surrounding Ising chain.

It is convenience to continue the calculation in the in-
teraction picture, in order to calculate the probability of
the qubit state flips due to the LZ sweep, and we may di-
vide the Hamiltonian into two parts as H(t) = H0(t)+V ,
where H0(t) = vt

2 σ
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free Hamiltonian and V = σx(∆
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bit-flip interaction.
Obviously, H0(t) may be diagonalized as long as we

diagonalize the part of Ising spin chain Hamiltonian, and
this may be realized through Jordan-Wigner transforma-
tion al =

∏
m<l σ

x
m(−σz

l + iσy
l )/2, Fourier transformation,

ck = 1√
N

∑
l al exp(−i2πlk/N), and Bogoliubov trans-

formation, bk = ck cos θk

2 − ic†−k sin θk

2 , and in the di-
agonalize procedure, we have defined cos θk = εk/ξk, in
which εk and ξk are defined as εk = 2J(λ − cos 2πk

N ),

while ξk are defined as ξk = 2J
√

[cos 2πk
N − λ]2 + sin2 2πk

N .
These transformations have transformed the spin opera-
tors into the quasi fermion operators in the momentum
space, which may greatly simplify our following studies.
From this procedure, we finally obtain the diagonalized
expression, H0(t) = vt

2 σ
z +
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The Hamiltonian in the interaction picture may be ob-
tained through H̃(t) = U0(t)†V U0(t), and we may rewrite
V into the form described by b†k and bk, which has been
defined in the above diagonalize procedure, in order to
bring H̃(t) into a useful form for our following study. De-
fine Jx =

∑
j σ

x, which is a magnetic moment operator of
the chain, and V = σxW in which W is defined as

W =
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Define the product state |n〉 = |n−M 〉...|n0〉|n1〉...|nM 〉,
which stands for the state of the quasi fermion envi-
ronments (Ising chain), n = {n−M , ..., n0, n1, n2, ..., nM}
with ni = 0, 1, Ω = {ω−M , ..., ω0, ω1, ω2, ..., ωM} with
ωk = ξk/�, and we may change the sum

∑
k nkξk/� into

the inner product form n · Ω for simplicity.
Then, using (2), (3) and the completeness of I =∑

n |n〉〈n|, we may obtain H̃(t) easily,

H̃(t) =
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in which we have defined Wmn = 〈m|W |n〉.

3 Landau-Zener transition probability

Now we can calculate the LZ transition probability based
on the above preparing work. Suppose that at time t =
−∞ the two-level system is in its excited state |↑〉 and
the Ising spin chain system starts in its ground state, i.e.,
|0〉 =

∏
k>0(cos θk

2 +i sin θk

2 c
†
kc

†
−k)|0〉k|0〉−k which satisfies

b±k|0〉 = 0, and the state of the whole system may be
expressed as |ψ̃(−∞)〉 = |↑〉|0〉. We now begin to calculate
the survival probability of the initial state |↑〉 at time t =
∞, i.e., P↑→↑(∞) = |〈↑|ψ̃(∞)〉|2. The evolution operator
Ũ(∞,−∞) with Ũ(t2, t1) = T exp[− i

�

∫ t2
t1
dτH̃(τ)], may

be expressed into a time-ordered expansion, with t1 ≤
t2 ≤ ... ≤ t2k−1 ≤ t2k in the interval (−∞,∞), and only
the even powers of H̃(τ) will contribute to P↑→↑(∞). The
perturbation series for 〈↑|ψ̃(∞)〉 can be expressed as,
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in which we have defined w1 = n(1) · Ω, wl = (n(l) −
n(l−1)) ·Ω, (2 ≤ l ≤ 2k) for simplicity, and n(l) denote the
state of the chain after the lth interactions.

In order to work out the above integration, it is advan-
tageous to make the variable transformations. Introduce
a set of new variables as [14], xq =

∑2q−1
l=1 (−1)l+1tl, yq =

t2q − t2q−1, (1≤q≤k), and consequently xl +
∑l−1

q=1 yq =
t2l−1. Then the above perturbation series (5) for 〈↑|ψ̃(∞)〉
can be changed to the form equation (6),
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An analogous analysis to references [15,16] will help us
to work out the above integration. Under permutation of
the xl, the integrand is not symmetric. If we transform
the xl into new variables s1 = x1 and sl = xl − xl−1

for l = 2, 3, . . . , k, then xl =
∑l

q′=1 sq′ . It is easy to
find that the

∫ ∞
−∞ ds1-integral will give us the δ-function

(2π�/v)δ(
∑k

l=1 yl + �

v (w2l + w2l−1) ). And since the ini-
tial state is |↑〉|0〉, we can obtain

∑k
l=1(w2l + w2l−1) =

n(2k) ·Ω ≥ 0, further more, the variables yl ≥ 0, therefore,
the integral on delta-function can only exist in the sub-
space y1 = y2 = . . . = yk = 0 and only in the condition
that the vector n(2k) = 0. Then we can return to the above
integration with the condition of yl = 0, (l = 1, ..., k), and
since within this subspace the integrand symmetric in the
variables xl, we may symmetrize the xl-integrals, by re-
placing the integrals of xl to (1/k!)

∫ ∞
−∞ dx1 . . .

∫ ∞
−∞ dxk.

After the xl integrals, then the yl-integrals can also be
evaluated as well by using the property of δ-functions,∫ ∞
0
δ(y)dy = 1/2. From the above time integrals we have

noticed that when the environment starts in the ground
state |↑〉 |0〉, only the (2k)th-order processes contribute to
the survival probability P↑→↑(∞), and they should satisfy
n(2) = n(4) = . . . = n(2k) = 0, then the quasi fermion en-
vironments will end up in their initial state |0〉 in case the
two-level system ends up in |↑〉. However, the time inte-
grals of the equation do not prohibit the occupation of the
states |↑〉|n 	= 0〉 at intermediate times, and they also do
not restrict the intermediate environment states |n(2l−1)〉,
but the the vanishing matrix elements Wmn give the fur-
ther restrictions to the integral.

According to the above analysis and calcula-
tions, we find that 〈↑|ψ̃(∞)〉 can be simplified into
exp(−πΓ 2/�v)|0〉, in which the parameter Γ 2 have been
defined as Γ 2 =

∑
nW0nWn0 = 〈0|W 2|0〉 and we may
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Fig. 1. 〈Jx〉0 and (∆̃Jx)2(solid line) as well as their derivatives
by λ (dot-star line) as the functions of the parameter λ. We
set N = 200, g = 0.1J in the numerical calculation.

obtain the exactly LZ transition probability for a qubit
coupled to the Ising spin-chain in a transverse field,

P↑→↓(∞) = 1 − P↑→↑(∞) = 1 − e−2πΓ 2/�v, (7)

in which the parameter Γ 2 can be work out as

Γ 2 =
(
∆

2
− g〈Jx〉0

)2

+ g2(∆̃Jx)2
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(
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2
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k>0

cos θk

)2

+ g2
∑
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where the term 〈Jx〉0 =
∑

k>0 cos θk is just the expect-
ing values of the magnetic moment of the spin chain,

and ∆̃Jx ≡
√
〈(Jx)2〉0 − 〈Jx〉20 =

√∑
k>0 sin2 θk is the

variance of the magnetic moment at the ground state
|0〉. In case of the coupling coefficient g = 0, the ex-
pression is in consist with the usual result P↑→↓(∞) =
1 − exp(−π∆2/2�v), and when ∆ = 0, the transition are
completely determined by the environment chain.

The final expressions (7) and (8) tell us that the LZ
transition of the central two-level system depends on both
the expecting value of the magnetic moment Jx and its
variance at ground state of the spin chain. Both the ex-
pecting value and its variance are closely related to the
strength of the transverse field, which will affect the LZ
transition equation through θk, thus we may conjecture
that the message of quantum phase transition happens at
the certain strength of the transverse field may also be
reflected on the LZ transition probability of the two-level
system.

Figure 1 shows 〈Jx〉0 and (∆̃Jx)2 as functions of the
transverse field strength λ, as well as their derivatives with
respect to λ. When the strength of the transverse field is
in the region 0≤λ≤ 1, only the expectation value of Jx

changes, while the variance part of Γ 2 does not. This fea-
ture tells us that, the change of LZ transitions mainly
caused by the expectation value of magnetic moment in
this case; however, when λ≥ 1, the variance become de-
creased with the transverse field, both of them will affect
the LZ transition and the expectation values of magnetic
moment may become the mainly causation. The expecta-
tion value changes sharply when λ → 1, indicating that
their derivatives may reveal the singularity near the crit-
ical points perfectly. The above property becomes more
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Fig. 2. (Color online) In units of J2, Γ 2 and its derivative
∂Γ 2/∂λ as the functions of λ and ∆. We set N = 200, g = 0.1J ,
∆max = 20J , in the numerical calculation.
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Fig. 3. (Color online) LZ transition probability P and its
derivative ∂P/∂λ as the function of λ and ∆. We set N = 200,
g = 0.1J , ∆max = 20J , v = 50J2/� in the numerical calcula-
tion.

clear when N increases, this result comes from the anal-
ysis given in [21,23,25]. In the following we shall present
the results with a specific number N = 200.

Since the magnetic moment of the spin chain changes
fast at the critical points of the chain, then we may ex-
pected that the LZ transition can also reflect such prop-
erty of the spin chain by the expression of (7) and (8).
Figure 2 shows the function of Γ 2 as well as its deriva-
tive relation with λ and ∆, we set the number of the
chain N = 200, g = 0.1J in the numerical illustration.
It is evident that when the strength of the transverse field
λ → 1, Γ 2 also changes sharply. As mentioned above, in
order to reveal this effect of quantum phase transitions
more clearly, we may pay more attention to the derivative
of Γ 2 by λ, which perfectly shows the quantum critical
phenomenon. Just as we have expected, this property has
been inherited very well by the LZ transition probabil-
ity P↑→↓(∞) and its derivative, as Figure 3 shows, where
we have set v = 50J2/� in the calculation. It is in evi-
dence that the critical point is reflected perfectly well in
the derivative of LZ transition, which is consist with the
above analysis.

Different values of ∆ also affect the property of LZ
transition probability. From equation (8) and Figure 3,
we may find that when ∆ > 0, the transition probability
declines first, and then reveals again, however, the sharply
changed location is not influenced, which can also give us
a good reflection of quantum phase transitions. When ∆
is large enough, the transition probability will not reveal
again in the case of λ > 1.
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Fig. 4. (Color online) In the environment of XY spin chain,
LZ transition probability P and its derivative ∂P/∂λ as the
function of λ and γ. We set N = 200, g = 0.1J , ∆ = 5J ,
v = 50J2/�, in the numerical calculation. The panel shows
∂P/∂λ changes with λ in case of γ = 0.2, 0.5, 0.8, 1.0.

4 The XY spin chain as the environment

Now we consider the case where the XY spin chain acts
as the environment. Straightforward calculation shows
that to get the result in this situation, we need to re-
place −J

∑M
j=−M (1+γ

2 σz
j σ

z
j+1 + 1−γ

2 σy
j σ

y
j+1 + λσx

j ) with
−J

∑M
j=−M (σz

j σ
z
j+1 + λσx

j ) in equation (1). Here γ mea-
sures the anisotropy in XY spin-chain. The XY Hamilto-
nian will turn into the transverse Ising chain for γ = 1,
and the XX chain in transverse field for γ = 0.

By the same procedure, we can obtain the LZ tran-
sition probability in this case, the equations are noth-
ing but changing the definition of θk and ξk in the
above discussions, i.e., cos θk = εk/ξk, in which εk =
2J(λ − cos 2πk

N ) and ξk are now defined as ξk =

2J
√

[cos 2πk
N − λ]2 + γ2 sin2 2πk

N .
Following the same calculation, we then obtain the

same expression as (7) and (8). Figure 4 shows the relation
between LZ transition probability P and the anisotropy
parameter, as well as its derivative ∂P/∂λ. We set N =
200, g = 0.1J , ∆ = 5J , v = 50J2/�, in the numerical
calculation. It shows that when γ changes from 1 to 0, the
critical behavior is reflected quite well in the LZ transition,
and the critical line λ = 1 is clearly reflected in the deriva-
tive of the LZ transition probability. We may deduce that
the distinctive feature of the XX chain environment is a
sharp discontinuity in the derivative ∂P/∂λ at λ = 1, this
is reflected more clearly from the panel in Figure 4. This
result confirm our above prediction that the LZ transition
can reflect the critical points of the environment.
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5 Conclusion

In summary, we have studied the Landau-Zener transi-
tions in two-state systems coupling to the Ising spin chain
and XY spin chain in transverse fields. We have calculated
the exact expressions of the LZ transition probabilities of
the two-state systems and analyzed the relation between
their properties and the occurrence of the quantum phase
transitions in the chain. The results show that the LZ
transition are determined by the spin chains’ magnetic
moments and their variance. As the magnetic moments
of the chains contain the information of quantum phase
transitions, the LZ transitions may act as the witnesses
of quantum phase transitions in the chains. Our results
suggest a rather intriguing relationship between LZ tran-
sitions and the environments’ properties, and therefore the
results may provide a new way to study the phenomenon
of quantum phase transition as well as Landau-Zener tran-
sition.

This work was supported by NCET of M.O.E, and NSF of
China under grant Nos. 60578014 and 10775023.
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